Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.13.464254

ABSTRACT

Understanding broadly neutralizing sarbecovirus antibody responses is key to developing countermeasures effective against SARS-CoV-2 variants and future spillovers of other sarbecoviruses. Here we describe the isolation and characterization of a human monoclonal antibody, designated S2K146, broadly neutralizing viruses belonging to all three sarbecovirus clades known to utilize ACE2 as entry receptor and protecting therapeutically against SARS-CoV-2 beta challenge in hamsters. Structural and functional studies show that most of the S2K146 epitope residues are shared with the ACE2 binding site and that the antibody inhibits receptor attachment competitively. Viral passaging experiments underscore an unusually high barrier for emergence of escape mutants making it an ideal candidate for clinical development. These findings unveil a key site of vulnerability for the development of a next generation of vaccines eliciting broad sarbecovirus immunity.

2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.14.426475

ABSTRACT

SARS-CoV-2 entry into host cells is orchestrated by the spike (S) glycoprotein that contains an immunodominant receptor-binding domain (RBD) targeted by the largest fraction of neutralizing antibodies (Abs) in COVID-19 patient plasma. Little is known about neutralizing Abs binding to epitopes outside the RBD and their contribution to protection. Here, we describe 41 human monoclonal Abs (mAbs) derived from memory B cells, which recognize the SARS-CoV-2 S N-terminal domain (NTD) and show that a subset of them neutralize SARS-CoV-2 ultrapotently. We define an antigenic map of the SARS-CoV-2 NTD and identify a supersite recognized by all known NTD-specific neutralizing mAbs. These mAbs inhibit cell-to-cell fusion, activate effector functions, and protect Syrian hamsters from SARS-CoV-2 challenge. SARS-CoV-2 variants, including the 501Y.V2 and B.1.1.7 lineages, harbor frequent mutations localized in the NTD supersite suggesting ongoing selective pressure and the importance of NTD-specific neutralizing mAbs to protective immunity.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL